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Segmentation of anatomical structures, from modalities like computed tomography (CT), magnetic reso-
nance imaging (MRI) and ultrasound, is a key enabling technology for medical applications such as diag-
nostics, planning and guidance. More efficient implementations are necessary, as most segmentation
methods are computationally expensive, and the amount of medical imaging data is growing. The
increased programmability of graphic processing units (GPUs) in recent years have enabled their use
in several areas. GPUs can solve large data parallel problems at a higher speed than the traditional
CPU, while being more affordable and energy efficient than distributed systems. Furthermore, using a
GPU enables concurrent visualization and interactive segmentation, where the user can help the algo-
rithm to achieve a satisfactory result. This review investigates the use of GPUs to accelerate medical
image segmentation methods. A set of criteria for efficient use of GPUs are defined and each segmenta-
tion method is rated accordingly. In addition, references to relevant GPU implementations and insight
into GPU optimization are provided and discussed. The review concludes that most segmentation meth-
ods may benefit from GPU processing due to the methods’ data parallel structure and high thread count.
However, factors such as synchronization, branch divergence and memory usage can limit the speedup.

� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Image segmentation, also called labeling, is the process of divid-
ing the individual elements of an image or volume into a set of
groups, so that all elements in a group have a common property.
In the medical domain, this common property is usually that ele-
ments belong to the same tissue type or organ. Segmentation of
anatomical structures is a key enabling technology for medical
applications such as diagnostics, planning and guidance. Medical
images contain a lot of information, and often only one or two
structures are of interest. Segmentation allows visualization of
the structures of interest, removing unnecessary information. Seg-
mentation also enables structure analysis such as calculating the
volume of a tumor, and performing feature-based image-to-patient
as well as image-to-image registration, which is an important part
of image guided surgery. Fig. 1 illustrates segmentation of a vol-
ume containing blood vessels. The segmentation result, or label
volume, is used to create a surface model of the blood vessels using
the marching cubes algorithm (Lorensen and Cline, 1987).
Many segmentation methods are computationally expensive,
especially when run on large medical datasets. Segmentation of
image data, acquired just before the operation as well as during
the operation, has to be fast and accurate in order to be useful in
a clinical setting. Furthermore, the amount of data available for
any given patient is steadily increasing (Scholl et al., 2010), making
fast segmentation algorithms even more important.

Graphic processing units (GPUs) were originally created for ren-
dering graphics. However, in the last ten years, GPUs have become
popular for general-purpose high performance computation,
including medical image processing. This is most likely due to
the increased programmability of these devices, combined with
low cost and high performance.

Shi et al. (2012) recently presented a survey on GPU-based
medical image computing techniques such as segmentation, regis-
tration and visualization. The authors provided several examples
on the use of GPUs in these areas. However, only a few segmenta-
tion methods are mentioned, and few details on how different seg-
mentation methods can benefit from GPU computing is provided.
Pratx and Xing (2011) provided a review on GPU computing in
medical physics with focus on the applications image reconstruc-
tion, dose calculation and treatment plan optimization, and image
processing. A more extensive survey on medical image processing
on GPUs was presented by Eklund et al. (2013). They investigated
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GPU computing in several medical image processing areas such as
image registration, segmentation, denoising, filtering, interpolation
and reconstruction.

This review will focus exclusively on medical image segmenta-
tion, and thus provide more references and details as well as a
comprehensive comparison of the different segmentation algo-
rithms. The goals of this review are to:

1. Give the necessary background information regarding GPU
computing, provide a framework for rating how suitable an
algorithm is for GPU acceleration, and explain how segmenta-
tion methods can be optimized for GPUs. (Section 2)

2. Explain and rate the most common segmentation methods
using this framework and provide a survey of how others have
accelerated these segmentation methods using GPUs.
(Section 3)

2. GPU computing

This section explains the basics of GPUs, and their potential and
limitations related to medical image segmentation. An overview of
GPU computing, including examples of applications, can be found
in Owens et al. (2008). This section may be skipped by readers with
a good understanding of GPU computing.

Modern GPUs used for general-purpose computations have a
highly data parallel architecture. They are composed of a number
of cores, each of which has a number of functional units, such as
arithmetic logic units (ALUs). One or more of these functional units
are used to process each thread of execution, and these groups of
functional units are called thread processors throughout this
review. All thread processors in a core of a GPU perform the same
instructions, as they share a control unit. This means that GPUs can
perform the same instruction on each pixel of an image in parallel.
The terminology used in the GPU domain is diverse, and the archi-
tecture of a GPU is complex and differs from one model and man-
ufacturer to another. For instance, the two GPU manufacturers
NVIDIA and AMD refer to the thread processors as CUDA cores
and stream processors, respectively. Furthermore, the thread pro-
cessors are called CUDA cores in the CUDA programming language
and processing elements in OpenCL (Open Computing Language).
Because of this diversity, an overview of the terminology used in
this review and by OpenCL, AMD and NVIDIA/CUDA is collected
in Table 1.

Thread processors are sometimes referred to as cores, giving the
false impression that these cores are similar to the cores of a CPU.
The main difference between a thread processor and a CPU core, is
that each CPU core can perform different instructions on different
data in parallel. This is because each CPU core has a separate con-
trol unit. McCool (2008) defined a core as a processing element
with an independent flow of control. Following these definitions,
this review will refer to the group of thread processors that share
Fig. 1. Threshold-based segmentation of a computed tomography (CT) scan. The intensity
threshold the voxel is segmented as part of the blood vessel. The segmentation result c
a control unit, as cores. GPUs are generally constructed to fit many
thread processors on a chip, while CPUs are designed with
advanced control units and large caches. At the time of writing,
high-end GPUs have several thousand thread processors and
around 20 to 40 cores (Advanced Micro Devices, 2012). On the
other hand, modern CPUs have around 4 to 12 cores. Fig. 2 shows
the general layout of a GPU and its memory hierarchy.

The first adopters of GPUs for general-purpose computing had
to use frameworks and languages originally designed for graphics,
such as OpenGL Shading Language (GLSL) and C for graphics (Cg).
As the popularity of GPU programming increased, general-purpose
GPU (GPGPU) frameworks such as CUDA and OpenCL were intro-
duced. As opposed to graphic frameworks, these do not require
knowledge about the graphics pipeline, and are therefore better
suited for general-purpose programming. OpenCL is an open stan-
dard for parallel programming on different devices, including
GPUs, CPUs and field-programmable gate arrays (FPGAs). OpenCL
is supported by many processor manufacturers including AMD,
NVIDIA and Intel, while CUDA can only be used with GPUs from
NVIDIA.

Image processing libraries that provide GPU implementations of
several low-level image processing algorithms are emerging. How-
ever, most libraries still lack high-level algorithms such as segmen-
tation methods. Two of the largest image processing libraries,
OpenCV and the Insight Toolkit (ITK), both provide a GPU module
with support for basic image processing algorithms. A difference
between the two toolkits is that OpenCV supports both CUDA
and OpenCL, while ITK only supports OpenCL. Accelerated segmen-
tation methods are so far limited to threshold-based segmentation
in these libraries. Other GPU-based image processing libraries
include NVIDIA Performance Primitives (NPP), ArrayFire, Intel Inte-
grated Performance Primitives (IPP), CUVILIB and OpenCL Inte-
grated Performance Primitives (OpenCLIPP). At the time of
writing, these libraries mainly provide GPU accelerated low-level
image processing routines.

Several aspects define the suitability of an algorithm towards a
GPU implementation. In this review, five key factors have been
identified: Data parallelism, thread count, branch divergence,
memory usage and synchronization. The following sections will
discuss each of these factors, and explain why they are important
for an efficient GPU implementation. Furthermore, several levels
are defined for each factor (e.g. low, medium, high and none/
dynamic), thereby creating a framework for rating to what extent
an algorithm can benefit from GPU acceleration.
2.1. Data parallelism

An algorithm that can perform the same instructions on multi-
ple data elements in parallel is said to be data parallel, and the set
of instructions to be executed for each element is called a kernel.
Task parallelism on the other hand, is a less restrictive type of
of each voxel in the input volume is compared to a threshold. If it is higher than the
an be used to generate a 3D surface model that can be displayed to the user.



Table 1
The different terminology used by different GPU vendors and GPGPU frameworks.

Used in this review OpenCL AMD GPUs NVIDIA(CUDA)

Core Compute unit Compute unit Streaming multiprocessor
Thread processor Processing element Stream processor CUDA Core
Thread Work-item Work-item Thread
Work-group Work-group Work-group Thread block
Atomic Unit of Execution (AUE) N/A Wavefront Warp
Kernel Kernel Kernel Kernel
Shared memory Local memory Local data store Shared memory

Fig. 2. General layout of a GPU and its memory hierarchy. The registers are private
to each thread processor, the shared memory is private to each core, and the global,
constant and texture memory is accessible from all thread processors. Note that the
actual layout is much more complex and differ for each GPU.
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parallelism in which algorithms execute different instructions in
parallel. As previously discussed, an important characteristic of
GPUs is the highly data parallel architecture. Hence, an algorithm
has to be data parallel in order to benefit from execution on a
GPU. In comparison, task parallel algorithms are more suited for
multi-core CPUs.

The degree of speedup achieved by parallelization is limited by
the sequential fraction of the algorithm. According to Amdahl’s law
(Amdahl, 1967), the maximum theoretical speedup of a program
where 95% is executed in parallel is a factor of 20, regardless of
the number of cores or thread processors being used. The reason
for this is that the processing time for the serial part of the code
will remain constant. However, in practice the speedup measured
and reported in the literature is often much higher than the theo-
retical limit. There are many reasons for this, one is that the serial
version of the program is not fully optimized. Another reason is
that the parallel version of the program may use the memory cache
more efficiently. Lee et al. (2010) discussed how to make a fair
comparison between a CPU and GPU program. Throughout this
review the degree of parallelism in a segmentation method is rated
as follows:

High: Almost entire method is data parallel (75–100%).
Medium: More than half of the method is data parallel (50–
75%).
Low: None or up to half of the method is data parallel (0–50%).
2.2. Thread count

A thread is an instance of a kernel. To obtain a substantial
speedup of a data parallel algorithm on the GPU, the number of
threads has to be high. There are two main reasons for this. Firstly,
the clock speed of the CPU is higher than that of the GPU, and sec-
ondly global memory access may require several hundred clock
cycles (Advanced Micro Devices, 2012), potentially leaving the
GPU idle while waiting for data. CPUs attempt to hide such laten-
cies with large data caches. GPUs on the other hand, have a limited
cache, and attempt to hide memory latency by scheduling another
thread. Thus, a high number of threads are needed to ensure that
some threads are ready while the other threads wait. Data parallel-
ism as previously described, is the percentage of the algorithm that
is data parallel. Thread count is how many individual parts the cal-
culation can be divided into and executed in parallel.

For most image processing algorithms, each pixel or voxel can
be processed independently. This leads to a high thread count,
and is a major reason why GPUs are well suited for image process-
ing. For example, an image of size 512x512 would result in 262,144
threads, and a volume of size 256x256x256, almost 17 million
threads. The rating of the thread count is defined as follows:

High: The thread count is equal to or more than the number of
pixels/voxels in the image.
Medium: The thread count is in the thousands.
Low: The thread count is less than a thousand.
Dynamic: The thread count changes during the execution of the
algorithm.

2.3. Branch divergence

Threads are scheduled and executed atomically in groups on the
GPU. AMD calls these groups wavefronts while NVIDIA calls them
warps. However, in this review they will be referred to as an atomic
unit of execution (AUE). An AUE is thus a group of threads that are
all executed atomically on thread processors in the same core. The
size of these groups may vary for different devices, but at the time
of writing it is 32 for NVIDIA GPUs (NVIDIA, 2010) and 64 for AMD
GPUs (Advanced Micro Devices, 2012).

Branches (e.g. if-else statements) are problematic because all
thread processors that share a control unit have to perform the
same instructions. To ensure correct results, the GPU will use
masking techniques. If two or more threads in an AUE execute dif-
ferent execution paths, all execution paths have to be performed
for all threads in that AUE. Such a branch is called a divergent
branch. If the execution paths are short, this may not reduce per-
formance by much.

The following levels are used for branch divergence:

High: More than 10% of the AUEs have branch divergence and
the code complexity in the branch is substantial.
Medium: Less than 10% of the AUEs have branch divergence,
but the code complexity is substantial.
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Low: The code complexity in the branches is low.
None: No branch divergence.

2.4. Memory usage

At the time of writing, GPUs with 2 to 4 GB memory are com-
mon while some high-end GPUs have 6 to 16 GB. Nevertheless,
not all of this memory is accessible from a GPU program, as some
of the memory may be reserved for system tasks (e.g. display) or
used by other programs. This amount of memory may be insuffi-
cient for some segmentation methods that operate on large image
datasets, such as dynamic 3D data. The system’s main memory can
be used as a backup, but this will degrade performance due to the
high latency of the PCIe bus. For iterative methods, this limit can be
devastating for performance as data exceeding the limit would
have to be streamed back and forth for each iteration. Defining N
as the total number of pixels/voxels in the image the rating of
memory usage is:

High: More than 5N.
Medium: From 2N to 5N.
Low: 2N or less.

2.5. Synchronization

Most parallel algorithms require some form of synchronization
between the threads. One way to perform synchronization is by
atomic operations. An operation is atomic if it appears to happen
instantaneously for the other threads. This means the other
threads have to wait for the atomic operation to finish. Thus, if
each thread performs an atomic operation, the operations will be
executed serially and not in parallel. Global synchronization is syn-
chronization between all threads. This is not possible to do inside
the kernels on the GPU except using atomic operations. Thus global
synchronization is generally done by executing multiple kernels
which can be expensive. This is due to the need for global memory
read and write, double buffering and the overhead of kernel
launches. Local synchronization is to perform synchronization
between threads in a group. This can be done by using shared
memory, atomic operations or the new shuffle instruction
(NVIDIA, 2013a). The rating of synchronization is defined in this
review as follows:

High: Global synchronization is performed more than hundred
times. This is usually true for iterative methods.
Medium: Global synchronization is performed between 10 and
100 times.
Low: Only a few global or local synchronizations.
None: No synchronization.

2.6. Framework

The previous sections covered five criteria, which we argue rep-
resent the most important factors affecting GPU performance. Gen-
erally, for an algorithm to perform efficiently on a GPU it has to be
data parallel, have many threads, no divergent branches, use less
memory than the total amount of memory on the GPU and use
as little synchronization as possible. However, there are several
other factors affecting GPU performance, such as kernel complex-
ity, ALU to fetch ratio, bank conflicts etc. The rating of each seg-
mentation algorithm is summarized in Table 2, along with
relevant references. The overall rating of a segmentation algorithm
is given by:

High: Large speedup (10 times faster or more).
Medium: Some speedup (2–10 times faster).
Low: No substantial speedup (0–2 times faster).

2.7. GPU optimization

This section provides some insight on how segmentation meth-
ods can be optimized for GPUs.
2.7.1. Grouping
As mentioned in the previous section, threads are scheduled

and executed atomically on the GPUs in groups (AUE). GPUs also
provide grouping at a higher level, enforced in software and not
in hardware like AUEs. These are called thread blocks in CUDA,
and are referred to as work-groups in OpenCL. One benefit of these
higher level work-groups is that they are able to access the same
shared memory, and thus synchronize among themselves. The size
of these work-groups can impact performance, and should be set
properly according to guidelines provided by the GPU manufactur-
ers (see Advanced Micro Devices, 2012; NVIDIA, 2013a).
2.7.2. Texture, constant and shared memory
In addition to global memory, GPUs often have three other

memory types, which can be used to speed up memory access.
These memory types are called texture, constant and shared (also
called local) memory. They are cached in different ways on the
GPU, however, the size of these caches on the GPU are small com-
pared to that of the CPU. Fig. 2 show how this memory hierarchy is
typically organized on a GPU.

The GPU has a specialized memory system for images, called
the texture system. The texture system specializes in fetching
and caching data from 2D and 3D textures (NVIDIA, 2010;
Advanced Micro Devices, 2012). It also has a fetch unit which can
perform interpolation and data type conversion in hardware. Using
the texture system to store images and volumes can improve per-
formance. Most GPU texture systems support normalized 8 and 16-
bit integers. With this format, the data is stored as 8 or 16-bit inte-
gers in textures. However, when requested, the texture fetch unit
converts the integers to 32-bit floating point numbers with a nor-
malized range. This decreases the memory usage, but also reduces
accuracy, and may not be sufficient for all applications.

The constant memory is a cached read-only area of the global
off-chip memory. This memory is useful for storing data that
remains unchanged. However, the benefit of caching is only
achieved when threads in an AUE read the same data elements
(Advanced Micro Devices, 2012). On AMD and NVIDIA GPUs the
constant cache is smaller than the cache used by the texture sys-
tem (L1) (Advanced Micro Devices, 2012; NVIDIA, 2013a).

The shared memory is a user-controlled cache, also called a
scratchpad or local memory. This memory is shared amongst all
threads in a group and is local to each core (compute unit) of the
GPU.

Generally, the GPU memory that is fastest to access is registers,
followed by shared memory, L1 cache, L2 cache, constant cache,
global memory and finally host memory (via PCI-express)
(Advanced Micro Devices, 2012). The number of registers per core
is limited, and exceeding this limit causes register spill, which will
reduce performance. To give an impression of the typical size of
these memory spaces, the AMD Radeon HD7970 has a 128 kB con-
stant cache for the entire GPU and 64 kB shared memory and
256 kB of registers for each core (Advanced Micro Devices, 2012).

Using as few bits as possible can also speed up processing con-
siderably. Using 8 and 16-bit integers when the range is sufficient
instead of the default 32-bit, not only reduces the memory needed,
but also memory access latency.



Table 2
Comparison of how well the segmentation methods are suited for GPU computation. See Section 2 for details on how each method is rated for each criteria. The ratings are based
on the most common parallel implementations, parameters and input.

Segmentation method Data parallelism Thread count Branch div. Memory usage Synch. GPU suitability

Thresholding High High None Low None High
Trivial to implement

Region growing High High High Low High Medium
Schenke et al. (2005), Pan et al. (2008), Sherbondy et al. (2003), Chen et al. (2006), Harish and Narayanan (2007)

Morphology High High High Low None-High High
Eidheim et al. (2005), Thurley and Danell (2012), Karas (2011)

Watershed High High High Medium High Medium
Roerdink and Meijster (2001), Kauffmann and Piche (2008), Pan et al. (2008), Vitor et al. (2009), Körbes et al. (2009),
Körbes and Vitor (2011), Wagner et al. (2010)

Active contours
External energy High High None Low None High

Podlozhnyuk et al. (2007)

GVF High High None High High High
Eidheim et al. (2005), He and Kuester (2006), Zheng and Zhang (2012), Smistad et al. (2012b), Alvarado et al. (2013)

Contour evolution High Medium None Low High Medium
He and Kuester (2006), Zheng and Zhang (2012), Eidheim et al. (2005), Perrot et al. (2011), Schmid et al. (2010), Li et al.
(2011), Kamalakannan et al. (2009)

Level sets
Default High High High Medium High High

Rumpf and Strzodka (2001), Hong and Wang (2004)

Narrow-band High Dynamic High Medium High High
Cates et al. (2004), Lefohn et al. (2004), Jeong et al. (2009)

Sparse-field High Dynamic High Medium High High
Roberts et al. (2010)

Atlas-based
Mutual Information High High None Medium High High

Lin and Medioni (2008), Shams and Barnes (2007), Shams et al. (2010b)

Iterative closest point High Low-Medium None Low Medium Medium
Langis et al. (2001), Qiu et al. (2009)

Statistical shape models
Active shape model High Low-Medium None Low Medium Medium

Song et al., 2010

Active appearance model High High None High Medium Medium
Ahlberg (2002)

Markov random field
Iterative conditional modes High High Low Medium High High

Griesser et al. (2005), Valero et al. (2011), Jodoin (2006), Walters et al. (2009), Sui et al. (2012)

Mean-field High High Low Medium High High
Saito et al. (2012)

Graph cut: Push-relabel High High High High High Medium
Dixit et al. (2005), Hussein et al. (2007), Vineet and Narayanan (2008), Garrett and Saito (2009)

Graph cut: Ford-Fulkerson Low – – – – Low
Liu and Sun (2010), Strandmark and Kahl (2010)

Centerline extr. & seg. of tubular structures
3D thinning High High High Low High High

Jiménez and Miras (2012)

Ridge traversal Low – – – – Low
Non found

Tube Detection Filters High High High Medium None High
Wang et al. (2013b), Erdt et al. (2008), Narayanaswamy et al. (2010), Bauer et al. (2009b), Smistad et al. (2012a),
Smistad et al. (2013)

Dynamic image segmentation
Kalman filter High Medium Low Low High Medium

Huang et al. (2011), Panin (2011)

Particle filter High Medium None-High Low–High High High
Montemayor et al. (2006), Lenz et al. (2008), Mateo Lozano and Otsuka (2008), Lozano and Otsuka (2008), Murphy-
Chutorian and Trivedi (2008), Brown and Capson (2012), Panin (2011)
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2.7.3. Stream compaction
Some applications may only require a part of the dataset to be

processed. This will lead to a branch in the kernel, where one exe-
cution path does processing while another does nothing. If threads
in the same AUE follow both execution paths, a divergent branch
occurs and no time is saved. In these cases, it may be more efficient
to remove the unnecessary elements in advance, thus removing
the divergent branch. This is called stream compaction, and two
such methods are parallel prefix sum (see Billeter et al. (2009)
for an overview) and histogram pyramids by Ziegler et al. (2006).
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3. Segmentation methods

In this section, several commonly used image segmentation
methods are presented and discussed in terms of GPU computing.
All of these segmentation methods can be used on both 2D and 3D
images, and the terms pixel and voxel are used interchangeably
throughout the review.

3.1. Thresholding

Thresholding segments each voxel based on its intensity using
one or more thresholds, as shown in Fig. 1. In its simplest form,
the method performs a binary segmentation using a single thresh-
old T:

Sð~xÞ ¼ 1 if Ið~xÞP T
0 else

�
ð1Þ

where T is the threshold, Ið~xÞ is the intensity of the volume at posi-
tion~x and Sð~xÞ is the resulting label or class of the voxel at position
~x. As seen in this equation, the method is completely data parallel,
since each voxel can be classified independently of all others, and
has no need for synchronization. The number of threads needed is
equal to the total number of pixels or voxels. While the method
contains a divergent branch (a branch were both paths are executed
for some AUEs), its simplicity enables the branch to be reduced to a
single instruction. The memory usage of the method is low, as only
storage for the actual segmentation result is needed, which has the
same size as the input image. No references on GPU implementation
of this segmentation method are provided as it is trivial to imple-
ment on the GPU. An example of a threshold kernel is provided in
Algorithm 1. This example uses a single threshold T and a 2D thread
ID.

Algorithm 1. Thresholding kernel
function THRESHOLDING KERNEL(image, result, T)
if image(threadID.x, threadID.y) P T then

result(threadID.x, threadID.y)  1
else

result(threadID.x, threadID.y)  0
end if

end function

It is important to note that this kernel is memory bound
because it performs one read and write operation to global mem-
ory, which is slower than the comparison operation. The perfor-
mance may be increased by minimizing the number of global
memory accesses. This can be achieved by reading several pixels
per thread in each read operation, while at the same time increas-
ing the number of compute operations per memory operation.
Fig. 3. Illustration of parallel region growing with double buffering. The pixel
labeled S is the seed pixel. The numbers indicate at which iteration the pixels in the
red regions are added to the final segmentation. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)
3.2. Region growing

Seeded region growing (Adams and Bischof, 1994) is another
commonly used segmentation method. This method starts with a
set of seed pixels known to be inside the object of interest. The
seeds are either set manually using a graphical user interface or
automatically using a priori knowledge. From these seeds, regions
containing the object of interest will expand to the neighboring
pixels if they satisfy one or more predefined criteria. These criteria
compare the current pixel to the seed or the pixels already
included, using attributes such as intensity, gradient or color. The
region will continue to expand as long as there exist neighboring
pixels that satisfy the criteria. This method is similar to breadth
first search and flood fill algorithms.

Region growing is especially useful when the background and
the region of interest have overlapping pixel intensities, and are
separated spatially by some wall or region. One example is thorax
CT, where the voxels of the airways and the parenchyma both have
low intensities, and are separated by a blood filled tissue with high
intensities.

Region growing is a data parallel method as all pixels along the
border of the evolving segmentation region are checked using the
same instructions. However, as the border expands, the number of
threads change. This is problematic because changing the number
of threads typically involves restarting the kernel, and this requires
reading all the values from global memory again. Nevertheless, the
method can be executed on the GPU by having one thread for each
pixel in the entire image in each iteration. Fig. 3 depicts how the
data parallel version of region growing works when double buffer-
ing is used. This involves adding more work and introduces branch
divergence, limiting the potential speedup over an optimized serial
implementation. Furthermore, as this is an iterative method, global
synchronization is needed, which also limits the speedup. The
memory usage is low (2N), as only the input data and the segmen-
tation result are needed.

An example of a region growing implementation is shown in
Algorithm 2. This is based on the parallel breadth first search algo-
rithm by Harish and Narayanan (2007). Segmented voxels are
marked with 1, queued voxels with 2 and others 0, in a result data
structure Swhich has the same size as the input image. The func-
tion Cð~xÞ checks the growing criteria for voxel~x. In this algorithm,
texture memory can be used to speed up the global memory
access. However, this requires double buffering which increases
the memory usage. Shared memory may also be used by first read-
ing global data to shared memory, then grow the region in the area
covered by the shared memory and finally write the result back to
global memory.

Schenke et al. (2005) implemented seeded region growing on
the GPU using GLSL, but provided little description on the imple-
mentation. Pan et al. (2008) presented an implementation using
CUDA and suggested increasing the number of seeds to make full
use of the GPU. Sherbondy et al. (2003) presented a different type
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of seeded region growing implemented on the GPU with GLSL,
which uses diffusion to evolve the segmentation. To reduce unnec-
essary computations due to branch divergence, their implementa-
tion uses a computational mask of active voxels which is updated
in each iteration. Chen et al. (2006) presented an implementation
of interactive region growing on a GPU. In this implementation,
the user marks a region of interest in 2D, which is extruded to
3D. This region of interest is used to create a computational mask
that constrains the segmentation. Their implementation also uses
GLSL and they reported real-time speeds for medical 3D datasets.

Algorithm 2. Parallel region growing
function REGIONGROWING(seeds)
initialize segmentation result S to all zeros
for each seed voxel~s in parallel do

% Add seed voxels to the queue
Sð~sÞ  2

end for
stopGrowing  false
while stopGrowing = false do

stopGrowing  true
GROW(S, stopGrowing)

end while
return S

end function

function GROW(S, stopGrowing)
for each voxel~x in parallel do

if Sð~xÞ ¼ 2 then
% Check growing criteria for voxel~x
if Cð~xÞ ¼ true then

% Add voxel to segmentation
Sð~xÞ  1
for each neighbor voxel ~y of ~x do

if Sð~yÞ ¼ 0 then
% Add voxel to queue
Sð~yÞ  2
stopGrowing  false

end if
end for

else
% Remove voxel from queue
Sð~xÞ  0

end if
end if

end for
end function
Fig. 4. Morphological dilation using a 3 � 3 square structuring element (shown in
red to the left). Since the center pixel is 1, all 0 valued pixels under the structuring
element are flipped to 1. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
3.3. Morphology

Morphological image processing is often used in combination
with other segmentation algorithms such as thresholding, and is
therefore included in this review. Examples of morphological tech-
niques include filling holes, and finding the centerline of a seg-
mented tubular structure. See Serra (1986) for a detailed
introduction to mathematical morphology in computer vision.

Morphological techniques use a mask called a structuring ele-
ment to investigate each pixel. The value of each pixel is deter-
mined by the neighboring pixels inside the structuring element.
The simplest morphological operations are dilation and erosion.
For a binary image, dilation adds all pixels in the structuring ele-
ment if the current pixel under the center pixel in the structuring
element is 1 as shown in Fig. 4, using a 3x3 square structuring ele-
ment. Erosion has the opposite effect in which it removes the cur-
rent pixel with value 1 if there are any pixels in the structuring
element that is 0. By combining and repeating these simple opera-
tions in addition to other common set operations such as the com-
plement, union and intersection, more advanced operations can be
performed.

These morphological operations process each pixel using the
same instructions. However, branch divergence limits the speedup,
which is also dependent on the size of the structuring element. To
avoid reading pixels multiple times from global memory, it can be
beneficial to use shared or texture memory. The memory usage is
low, as only the image itself and the structuring element is needed
for the calculations. Some morphological operations such as thin-
ning, are iterative and therefore require global synchronization.

Morphological operations are a type of stencil operations which
can be optimized for GPUs as demonstrated by Holewinski et al.
(2012). Eidheim et al. (2005) presented GPU implementations of
dilation and erosion using shader programming. They suggested
using the shader min and max operations to avoid if-statements.
The impact of the structuring element size can be reduced with
more advanced methods, such as the Herk-Gil-Werman algorithm
(Herk, 1992; Gil and Werman, 1993). This was done on the GPU by
Thurley and Danell (2012) using CUDA. Morphological operations
can be performed on both binary and non-binary images. Karas
(2011) presented a GPU implementation of morphological grey-
scale reconstruction.
3.4. Watershed

The concept of watershed segmentation (Vincent and Soille,
1991) is based on viewing an image as a three dimensional object,
where the third dimension is the height of each pixel. This height is
determined by the intensity value of the pixel, as shown in Fig. 5. In
the resulting landscape, there are three types of points. These are
determined by the analogy of how a drop of water falling on that
specific point would move according to the topographic layout of
the landscape:

1. Points that are local minima and where a drop of water would
stay in this point.

2. Points at which a drop of water would move downwards into
one specific local minimum.

3. Points at which a drop of water would move downwards into
more than one local minimum.

The points belonging to type 2 are often called watersheds or
catchment basins and the points belonging to type 3 are often called
divide lines or watershed lines.



Fig. 5. Watershed segmentation. If the intensity values of the pixels of the images
on the left are interpreted as heights, it will give create the landscape to the right.

Fig. 6. Illustration of active contours. The image to the left is the input image, and
the image to the right shows the gradient magnitude of the input image convolved
with a Gaussian kernel. The red line superimposed on the right image is the active
contour, which is driven towards the high gradient parts of that image, corre-
sponding to the edges in the original image. The green line superimposed on both
images show the contour of the lumen. (For interpretation of the references to
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The main idea of segmentation algorithms based on these con-
cepts is to find the watershed lines. To find them, another analogy
from this topographic landscape is used. Suppose that holes are
created in all the points that are local minima, and that water flow
through these holes. The watersheds in the topographic landscape
will then be flooded at a constant rate. When two watersheds are
about to merge, a dam is built between them. The height of the
dam is increased at the same rate as the water level rises. This pro-
cess is continued until the water reaches the highest point in the
landscape, corresponding to the pixel with maximum intensity.
The dams then correspond to the watershed lines.

For a review of different implementations of watershed seg-
mentation the reader is referred to Roerdink and Meijster (2001).
They also investigated parallel implementations of the method,
and concluded that parallelization is hard, because of its sequential
nature. A parallel implementation is possible by transforming the
landscape into a graph, subdividing the image, or flooding each
local minimum in parallel. However, Roerdink and Meijster con-
cluded that all of these methods lead to modest speedups. Per-
forming watershed segmentation in a data parallel manner
entails adding more work and branch divergence. Thus the
speedup over an optimized serial implementation will not be high.
This is evident in the literature, where speedups of only 2–7 times
are reported.

Kauffmann and Piche (2008) presented a GPU implementation
of watershed segmentation using the cellular automaton approach
described in Algorithm 3. This method calculates the shortest path
from each local minima to all pixels using the Ford-Bellman algo-
rithm. By creating a cost function where the cost of climbing in
the landscape is infinite, the shortest path will always lead down-
wards. Pixels are then assigned the same segmentation label as
their closest minima. Using this approach, all the pixels in the
image may be processed in parallel using the same instructions.
The number of iterations needed to reach convergence depends
on the longest path and the branch convergence is high. The mem-
ory usage is 4N because of double buffering, and that the distance
has to be stored for each pixel. Kauffmann and Piche reported a
speedup of 2.5 times, and presented results for 3D images as well.

Algorithm 3. Parallel watershed segmentation using a cellular
automaton (Kauffmann and Piche, 2008)

for all voxels ~x in parallel do
if ~x is local minima number i then

distance(~x)  0
label(~x)  i

else
distance(~x)  1
label(~x)  0

end if
end for
while convergence is not reached do

for all voxels ~x in parallel do
% N is the set of all neighbors of ~x
d min~n2Nðdistanceð~nÞ þ costð~n;~xÞÞ
~y argmin~n2Nðdistanceð~nÞ þ costð~n;~xÞÞ
if d < distanceð~xÞ then

distanceð~xÞ0  d
labelð~xÞ0  label(~y)

end if
end for

distance  distance0

label  label0

end while
Pan et al. (2008) presented a CUDA implementation, using a
multi-level watershed method. However, few implementation
details and results were included. Vitor et al. (2009) created one
GPU and one hybrid CPU-GPU implementation. They concluded
that the hybrid approach was up to two times faster. Their method
initially finds the lowest point from each pixel using a steepest
descent traversal. The plateau pixels are then processed to find
the nearest border. Finally, the pixels are labeled using a flood fill
algorithm from each minimum similar to seeded region growing.
Körbes et al. (2009, 2011) presented an implementation based on
the work of Vitor et al. (2009). They also compared performance
to the cellular automaton approach by Kauffmann and Piche
(2008), and concluded that their implementation was about six
times faster than a sequential version. This parallel method also
processes each pixel iteratively and suffers from branch diver-
gence. Wagner et al. (2010) processed each intensity level in order
starting with the lowest intensity. The labels were merged in each
iteration. Their implementation used CUDA, and was 5–7 times
faster than a serial implementation on 3D images.
3.5. Active contours

Active contours, also known as snakes, were introduced by Kass
et al. (1988). These contours move in an image while trying to min-
imize their energy, as shown in Fig. 6. They are defined parametri-
cally as vðsÞ ¼ ½xðsÞ; yðsÞ�, where xðsÞ and yðsÞ are the coordinates
for part s of the contour. The energy E of the contour is composed
of an internal Eint and external energy Eext:

E ¼
Z 1

0
Eintðv ; sÞ þ EextðvðsÞÞds ð2Þ

The internal energy depends on the shape of the contour and can,
for example, be defined as:
colour in this figure legend, the reader is referred to the web version of this article.)



Fig. 7. Example of how gradient vector flow diffuses the gradients while preserving
the large input gradients. The image to the far left is the input image. The next
images depict the magnitude of the vector field after 0, 50 and 500 iterations. The
bottom row shows the vector field of the zoomed area indicated by the small red
square. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Eintðv ; sÞ ¼
1
2
ðajv 0ðsÞj2 þ bjv 00ðsÞj2Þ ð3Þ

where a and b are parameters that control the tension and rigidity
of the contour.

The contour can be driven towards interesting features in the
image, by having an external energy with low values at the inter-
esting features and high elsewhere. There are several different
choices of external energy. A popular choice is the negative magni-
tude of the image gradient, i.e. Eextð~xÞ ¼ �jr½Gr � Ið~xÞ�j2, where Gr�
is convolution with a Gaussian lowpass filter. This choice of energy
drives the contour towards the edges in the image, as depicted in
Fig. 6. The convolution and gradient calculation can be executed
in parallel for each pixel, and optimized using texture or shared
memory. A study on how to optimize image convolution for GPUs
can be found in the technical report by Podlozhnyuk et al. (2007).

Active contours can be divided into two processing steps. The
first is calculating the external energy, and the second is evolving
the contour. Both are data parallel operations. The number of
threads for calculating the external energy is generally the same
as the number of pixels, while the thread count for evolving the
contour is lower.

A numerical solution to find a contour that minimize the energy
E can be found by making the contour dynamic over time vðs; tÞ.

av 00ðs; tÞ � bv ð4Þðs; tÞ � rEext ¼ 0 ð4Þ

The Euler Eq. (4) can be solved on the GPU as done by He and
Kuester (2006) and Zheng and Zhang (2012). The thread count is
equal to the number of sample points on the contour, which is
much lower than the number of pixels in the image. Eidheim
et al. (2005) concluded that evolving the active contour on the
CPU was faster, as long as the number of points on the contour
was below approximately 500. To evolve the contour, each point s
has to be extracted from the image using interpolation. Thus, active
contours may benefit from using the texture memory, which can
perform interpolation efficiently.

Several other formulations of active contours have been imple-
mented on the GPU. Perrot et al. (2011) accelerated a type of active
contours that optimizes a generalized log-likelihood function on
the GPU. They used a prefix sum algorithm to calculate sums of
the image, and shared memory to improve memory access latency.
Schmid et al. (2010) implemented a discrete deformable model
with several thousand vertices on the GPU using CUDA. Their
implementation also allows interactive and concurrent visualiza-
tion by inserting the vertices into a vertex buffer object, and ren-
dering it with OpenGL. Li et al. (2011) used active contours based
on Fourier descriptors implemented on GPUs, for real-time contour
tracking in ultrasound video. Kamalakannan et al. (2009) presented
a GPU implementation of statistical snakes, which compared the
intensity value of each sample point to a seed point. Their imple-
mentation was used to assess stains on fabrics.

As shown by Xu and Prince (1998), some different formulations
of the external force field rEext may get stuck in local minima,
especially if boundary concavities are present. Xu and Prince
(1998) introduced a new external force field, gradient vector flow
(GVF), which addressed this problem. The GVF field is defined as
the vector field ~V , that minimizes the energy function E:

Eð~VÞ ¼
Z

ljr~Vð~xÞj2 þ j~Vð~xÞ � ~V0ð~xÞj2j~V0ð~xÞj2d~x ð5Þ

where ~V0 is the initial vector field and l is an application dependent
constant. This equation can be solved using an iterative Euler’s
method as depicted in Fig. 7. This approach differs from other
choices of external energy, which are generally not iterative. GVF
is thus more time consuming as many iterations are needed to
reach convergence. A parallel GPU implementation is possible, as
each pixel can be processed independently in each iteration using
Algorithm 4. This gives a high thread count and requires global syn-
chronization at each iteration. There is no branch divergence in the
calculations, but the memory usage is high, as the method creates a
vector for each pixel and requires double buffering. The discrete
Laplacian operator in Algorithm 4 is calculated as a stencil opera-
tion, which requires access to neighboring pixels. This calculation
may benefit from the 2D/3D spatial caching of the texture system.
Eidheim et al. (2005), He and Kuester (2006), Zheng and Zhang
(2012) all presented GPU implementations of GVF and active con-
tours for 2D images using shader languages. A GPU implementation
of 2D GVF written in CUDA was done by Alvarado et al. (2013).
Smistad et al. (2012b) presented an optimized GPU implementation
of GVF for 2D and 3D using OpenCL. This implementation use both
texture memory and a 16-bit storage format to reduce memory
latency.

Algorithm 4. Parallel gradient vector flow using Euler’s method

Input: Initial vector field ~V0 and the constant l.
~V  ~V0

for a number of iterations do
for all voxels~x in parallel do
~V 0ð~xÞ  ~Vð~xÞ þ lr2~Vð~xÞ � ð~Vð~xÞ � ~V0ð~xÞÞj~V0ð~xÞj2

end for
~V  ~V 0

end for
3.6. Level sets

Similar to active contours, level set methods perform segmenta-
tion by propagating a contour in the image (Sethian, 1999). The
advantage of level sets compared to the methods in the previous
section, is that it allows for splitting and merging of the contours
without any additional processing.

Contours in the level set method are represented by the level
set function, which is one dimension higher than the contour.
Hence, the level set function is a 3D surface when 2D images are
being segmented, and a 4D hypersurface for 3D images. The level
set function in 2D segmentation, z ¼ /ðx; y; tÞ, is defined as a func-
tion which returns the height z from the position x; y in the image
plane to the level set surface at time t. The contour is defined
implicitly as the zero level set, which is where the height from
the plane to the surface is zero (/ðx; y; tÞ ¼ 0). This is where the
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image plane and the surface intersect. To propagate the contour in
the x; y plane, the level set surface is moved in the z direction as
shown in Fig. 8. How fast and in which direction a specific part
of the contour moves, is determined by how the level set surface
bends and curves. The closer the surface is to being parallel with
the image plane, the faster it propagates. When the level set sur-
face is orthogonal to the image plane, the contour does not propa-
gate at all. Assuming that each point on the contour moves in a
direction normal to the contour with speed F, the contour can be
evolved using the following PDE:

@/ðx; y; tÞ
@t

¼ Fðx; y; IÞjr/ðx; y; tÞj ð6Þ

The speed function F varies for different areas of the image I and can
be designed to force the contour towards areas of interest and avoid
other areas. In image segmentation, the speed function is usually
determined by the intensity or gradient of the pixels, and the curva-
ture of the level set function. A negative F makes the contour con-
tract, while a positive F makes it expand.

The level set method starts by setting an initial contour on the
object of interest. This is done either manually or automatically
using prior knowledge. Next, the level set function is initialized
to the signed distance transform of the initial contour. Finally,
the contour is updated until convergence.

The PDE above can be solved using an iterative data parallel
method, and finite difference methods as shown in Algorithm 5.
The thread count is equal to the number of pixels in the image,
as the level set function is updated iteratively for each pixel.
Rumpf and Strzodka (2001) presented a GPU implementation as
early as in 2001. Updating the level set function / for voxels far
away from the contour, does not significantly affect the movement
of the contour. This observation has lead to two different optimiza-
tion techniques, known as narrow band and sparse field. Both
reduce the number of voxels updated in each iteration. The narrow
band method updates / only within a thin band around the con-
tour. However, the sparse field method updates / only at the
neighbor pixels of the contour. Although these methods reduce
the number of threads considerably, they introduce branch diver-
gence. All of these level set methods also require global synchroni-
zation after each iteration.

Hong and Wang (2004) used shader programming to create a
GPU implementation of level sets for 2D images, and reported a
speedup of over 10 times that of a CPU implementation. Cates
et al. (2004) presented an interactive application for level set seg-
mentation of 3D images on the GPU. Lefohn et al. (2004) created a
GPU implementation for volumes, which was 10–15 times faster
than an optimized serial version. They used the narrow band opti-
mization method and streamed only the relevant parts of the vol-
Fig. 8. Illustration of level set segmentation. A level set (hyper) surface is moved
through the image plane x; y for each time step. The current contour of the
segmentation is defined as the location where the height h to the (hyper) surface is
zero. This is also called the zero level set. In this example the level set segmentation
is a circle that is gradually inflated over time.
ume to the GPU from the CPU. This was done because the GPU
memory was too small to fit the entire volume at that time.
Jeong et al. (2009) also used the narrow band method. However,
they updated the active voxel set on the GPU using atomic opera-
tions. Roberts et al. (2010) presented an optimization technique
similar to the sparse field method. They used prefix sum scan
(see Billeter et al., 2009) to compact the buffers containing the
coordinates of the active voxels on the GPU.

Algorithm 5. Parallel level sets
Input: Initial segmentation and input image I
Output: Segmentation result S
Initialize / to signed distance transform from the initial

segmentation
for a number of iterations or until convergence do

for all voxels~x in parallel do
Calculate first order derivatives
Calculate second order derivatives
Calculate gradient r/ð~xÞ
Calculate curvature
Calculate speed term Fð~x; IÞ
/0ð~xÞ  /ð~xÞ þ DtFð~x; IÞjr/ð~xÞj

end for
/ ¼ /0

end for
for all voxels ~x in parallel do

if /ð~xÞ 6 0 then
Sð~xÞ  1

else
Sð~xÞ  0

end if
end for
3.7. Atlas/registration-based

An atlas is a pre-segmented image or volume. Atlas-based seg-
mentation methods use registration algorithms to find a one-to-
one mapping between the atlas and the input image. This mapping
is the segmentation result. Each pixel in the input image will have
a corresponding pixel and segmentation class in the atlas.

Pham et al. (2000) argued that atlas-based segmentation is gen-
erally better suited for segmentation of structures that are stable in
the population at study. This makes it easier to create a represen-
tative atlas. Still, atlas-based methods can be used as an initializa-
tion of other methods, when large variation or pathology (e.g. an
MRI scan of a patient with a brain tumor) is present. In addition,
atlas-based methods have the advantage that regions may be auto-
matically classified, based on labels from the atlas.

Several registration methods exist, and are often divided into
the two categories intensity- and feature-based methods. Inten-
sity-based registration methods use the intensity values in the
two images (or image and atlas), and a similarity measure to per-
form the registration. Feature-based registration methods first
extract some common features from the images, and then register
the images by matching these features. Mutual information and
iterative closest point are the most common intensity- and fea-
ture-based registration methods respectively, and both are dis-
cussed in more detail below. For even more details on how to
accelerate registration methods on the GPU, the reader is referred
to Shams et al. (2010a) and Fluck et al. (2011).



Fig. 9. Illustration of the iterative closest point method to align two lines. A set of
points is chosen along each line. One of the point sets is iteratively moved and
transformed to minimize the distance between each point set.
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3.7.1. Intensity-based registration - Mutual Information
Mutual information (MI) is a measure that can be used to assess

how well one image is registered to another. This measure is based
on the assumption that regions of similar intensity distribution in
one image, correspond to regions with similar intensity distribu-
tion in the other image (i.e. a dark region in one image can be sim-
ilar to a bright region in another image). The MI measure M is
based on Shannon’s entropy H and is defined as:

MðA;BÞ ¼ HðBÞ � HðBjAÞ ð7Þ

where A and B are two images. Shannon’s entropy is defined as:

HðAÞ ¼
X
i2A

pilog
1
pi

� �
ð8Þ

For images, pi is the probability that the current pixel i in image A
has a specific gray value. The probability pi can be calculated from
the histogram of the image. MI can be interpreted as the decrease
in uncertainty of image B, when another image A is presented. In
other words, if the MI is high, the images are similar.

To register two images using MI, one of the images is trans-
formed to maximize the MI measure. The GPU texture memory
has hardware support for interpolation, which is often needed for
the image transformations. Different optimization techniques such
as gradient descent and Powell’s method can be used to find the
transformation needed to maximize MI. For a detailed review of
registration of medical images using MI see Pluim et al. (2003).
The calculation of the MI measure requires summation, which
can be done in parallel using the prefix sum scan method. The his-
togram may be calculated in parallel using sort and count. The
number of threads is high, but global synchronization is needed,
as this is an iterative method. The optimization techniques gradi-
ent descent and Powell’s method are not ideal for parallel execu-
tion because of their sequential nature (Fluck et al., 2011). Thus,
several GPU-based registration methods run the optimization on
the CPU, and the similarity measure on the GPU. Global optimiza-
tion techniques such as evolutionary algorithms (EAs) are highly
amenable to parallelization. However, EAs are generally more com-
putationally expensive, and may be slow even when run in parallel.
Lin and Medioni (2008) and Shams and Barnes (2007) presented
GPU implementations of the MI computation using CUDA. Shams
et al. (2010b) improved their previous implementation by optimiz-
ing the histogram computations. This was done using a parallel
bitonic sort and count method to avoid performing expensive syn-
chronization and use of atomic counters. With these improve-
ments they reported real-time registration of 3D images, and a
50 times speedup over a CPU version of MI.
3.7.2. Feature-based registration - Iterative closest point
Iterative closest point (ICP) is an algorithm for minimizing the

difference between two sets of points. This algorithm was first
used for registration by Besl and McKay (1992). In order to use this
algorithm for registration, corresponding physical points have to
be identified in both images. This can be done either manually or
by using image processing techniques. The algorithm starts by
finding the closest point in the second point set for each point in
the first point set. The corresponding points are then used to calcu-
late a transformation, which transforms one of the point sets closer
to the other. Transformation parameters are usually estimated
using a mean square cost function. This procedure is repeated as
long as necessary, and is depicted in Fig. 9 for two lines.

Finding the closest points and transforming the corresponding
points are both data parallel operations. The thread count is equal
to the number of points, which is typically significantly lower than
the number of pixels in the image. The memory usage is low, and
there is no branch divergence. However, global synchronization is
needed at the end of each iteration.

Langis et al. (2001) described a parallel implementation of ICP
for clusters where the points were distributed on several nodes.
The rigid transformation was computed in parallel using a quater-
nion-based least squares method. This resulted in an improved
speedup due to increased parallelization and reduced communica-
tion among the nodes. Qiu et al. (2009) presented a GPU imple-
mentation of the ICP algorithm with 88 times speedup over a
sequential CPU version.
3.8. Statistical shape models

Several organs in the human body have similar shapes for dif-
ferent individuals. The shape of these organs may be modeled
and segmented using a statistical shape model (SSM). This method
creates a statistical model of an organ based on a set of pre-seg-
mented images from several individuals. Segmentation is done
by fitting the model to the new image data. The difference between
SSMs and atlas models is that SSMs model the shape, while an atlas
models the tissue distribution and location of each segmentation
class in an image. Nevertheless, one type of SSMs called active
appearance models also use intensity information in the image.

Heimann and Meinzer (2009) presented a review on image seg-
mentation using SSMs. They argued that this method is more com-
plex than other methods, but more robust to local image artifacts
and noise. An SSM consists of a mean shape and modes of varia-
tions. Generally, shapes are represented as a set of landmark points
called a point distribution model (PDM). These points have to be
present in each training sample, and be located at the same ana-
tomical positions. Setting the landmarks in the training samples
can be done manually by an expert. However, this is time consum-
ing, and not practical for large 3D shapes. Thus, automatic methods
are often used instead.

After the landmarks have been identified, the shapes of the
training samples are aligned using translation, rotation and scaling.
The generalized procrustes analysis algorithm (GPA) (Gower, 1975)
is often used for this. This algorithm iteratively aligns the shapes to
their unknown mean. This entails a series of summations and ver-
tex transformations. All of these calculations are data parallel, and
can be performed on the GPU with a thread count equal to the
number of landmarks. Next, a shape correspondence algorithm is
used to perform registration of all the shapes. The ICP and MI reg-
istration algorithms can be used for this (see previous section).
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Other methods parameterize all shapes to a common base domain,
such as a circle for 2D and a sphere for 3D. Corresponding land-
marks are then identified as those that are located at the same
locations in the base domain. Nevertheless, the initial parameteri-
zation of the shapes may not be optimal, and re-parameterization
may be needed. Minimum description length (MDL) (Davies et al.,
2002) is an objective function that tries to create optimal land-
marks on each shape. This can be used to guide the re-parameter-
ization and give an optimal set of landmarks. Generally,
establishing shape correspondence is one of the most challenging
tasks of SSMs and one of the major factors influencing the overall
result (Heimann and Meinzer, 2009).

After the landmarks have been identified and placed in the
same coordinate space, the mean shape and modes of variation
can be computed. Assuming that the landmark points are arranged
as a single vector~xi ¼ fðx1; y1; z1Þ; . . . ; ðxN; yN; zNÞg of coordinates for
each training sample i, the mean shape,~xmean, can be calculated as
the average location of each landmark:

~xmean ¼
1
M

XM

i¼1

~xi ð9Þ

In addition to the mean, a small set of modes which describes the
shape variations is calculated. This is usually done with principal
component analysis (PCA). Andrecut (2009) and Jošth et al. (2011)
both presented a GPU implementation of PCA using CUDA. The
amount of speedup depends on the number of landmark points,
and they argued that more than a thousand landmark points are
necessary. For large organs such as the liver, several thousand land-
marks are often employed (Heimann et al., 2009). However, there
might not be any benefit of GPU execution for small organs, where
only a few hundred landmarks are used. Algorithm 6 describes a
crude parallel PCA implementation. More details can be found in
Andrecut (2009). The implementation is iterative and test for con-
vergence by comparing the absolute difference of the new and old
eigenvalue / to a parameter �. The actual computations consist of
several matrix operations such as multiplication, addition and
transpose, all of which can be executed in parallel on the GPU. There
are several GPU libraries that can be used to accelerate these matrix
operations. A few examples are ViennaCL, MAGMA, cuBLAS and
clBLAS.

After PCA has been performed it is possible to approximate each
valid shape using the first c modes

~x ¼~xmean þ
Xc

i¼1

~bi
~/i ð10Þ
Fig. 10. The active shape model algorithm locates borders in a line search from each
landmark point on the statistical shape model. A displacement is calculated and the
shape is moved, scaled, rotated and deformed to best fit the identified border
points. This is repeated until convergence.
where ~bi is the ith shape parameter and ~/i is the ith of the c eigen-
values obtained by PCA.

Algorithm 6. Parallel PCA
Input: Matrix of landmarks for each shape:
X ¼ ½~x1;~x2; . . .~xM�
Output: First c eigenvalues: /1;/2; . . . /c

R ¼ X
for k ¼ 1 to c do

/k  0
fora maximum number of iterations do

Do several matrix operations in parallel
which result in a new /0k
(see Andrecut, 2009 for details)
if j/k � /0kj < �

break
end if
/k  /0k

end for
Update residual matrix R

end for

The calculations of the mean shape~xmean and a specific shape~x
can also be run on the GPU. However, the achievable speedup
depends on the number of landmark points, which as discussed
above can be low. Nevertheless, the creation of the statistical shape
model is ideally done only once in a training phase and is not per-
formed for each new segmentation. It can therefore be done offline,
and one can argue that the acceleration of the training phase is not
as important as the actual segmentation step in the SSM method.

After the SSM is built, an image is segmented using a search
algorithm that tries to match the SSM to the image.

Khallaghi et al. (2011) used a registration method based on the
linear correlation of linear combination similarity metric. They
implemented the registration part on the GPU, while the rest of
the SSM method was implemented on the CPU. The registration
process entailed simulation of an ultrasound image based on a
CT image, and a B-spline deformable registration. They reported
a speedup of 350 times in comparison to a CPU implementation.
However, they provided few details on the implementation.

Active shape models (ASMs) (Cootes et al., 1995) is a local
search algorithm that searches for contour points along the normal
of each landmark point. This is depicted in Fig. 10. After a displace-
ment for each landmark point has been calculated, the shape is
moved, rotated and scaled. Finally, the shape parameters ~bi are
estimated. This is repeated until the shape change falls below a
threshold, which requires global synchronization. ASM is a data
parallel method with the thread count equal to the number of
landmark points. The memory usage is low, as only the SSM has
to be stored.

Another search algorithm for SSMs is active appearance models
(AAMs) (Cootes et al., 2001). AAMs use appearance models to drive
the search. These appearance models are able to generate a syn-
thetic image from the current shape. This synthetic image is super-
imposed on the input image, and used to calculate how well the
current shape matches the input image. Finally, this measure is
used to estimate the orientation, scale and shape parameters. As
with ASM, this is done iteratively, and requires global synchroniza-
tion. The synthesis of images is done by texture transformation, a
task which GPUs excel at due to its data parallel nature and high
thread count. Nevertheless, Heimann and Meinzer (2009) argue
that AAM is rarely used on 3D images as the memory requirement
of AAM is very high.
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ASM and AAM have been popular for tracking faces in video.
Ahlberg (2002) and Song et al. (2010) presented GPU implementa-
tions of AAM and ASM respectively for face tracking. Ahlberg
(2002) used OpenGL for the texture mapping in the AAM search.
Song et al. (2010) used the GPU for pre-processing operations such
as edge enhancement and tone mapping, and for the ASM search.
Fig. 11. Illustration of graph cut segmentation of a 3 � 3 image. The image to be
segmented is shown to the left, its graph representation on the right. The thickness
of the edges indicates their weight.
3.9. Markov random fields and graph cuts

Markov random field (MRF) segmentation (Wang et al., 2013a)
considers all the pixels in the image as nodes in a graph. All nodes
are connected and each pixel has an edge to its neighbor pixels.
Each node has a probability distribution associated with it, which
consists of the probability of the pixel belonging to each class.
These nodes have the Markov property, which states that the prob-
ability distribution of a node only depends on its closest neighbors.

MRF segmentation is to find the segmentation S that maximizes
the probability PðSjIÞ, where I is the observed image to be seg-
mented. S can express several different segmentation classes for
each pixel. This makes MRF segmentation ideal for multi-label seg-
mentation. Using Bayes formula this becomes:

PðSjIÞ ¼ PðIjSÞPðSÞ
PðIÞ ð11Þ

In this formula, PðIjSÞ is the probability of observing an image I
given a segmentation S. PðSÞ is the probability of a segmentation,
and can be used to model how a segmentation result should look
like. PðIÞ is considered to be a normalization constant, and is there-
fore ignored in the calculations. Structures of interest can be seg-
mented by creating different expressions for PðIjSÞ and PðSÞ.

There are several methods for maximizing the a posteriori dis-
tribution. One method is iterative conditional modes (ICM), which
was introduced by Besag (1986). ICM starts with an initial segmen-
tation S, and optimizes the local energy of each pixel deterministi-
cally. Thus, each pixel can be processed in parallel. This is repeated
until convergence, which requires global synchronization. How-
ever, ICM is prone to getting stuck in local minima. Simulated
annealing (SA) (Kirkpatrick et al., 1983) is another optimization
method, which can avoid local minima. However, SA generally
need a lot more iterations to reach convergence. SA select the class
of each pixel stochastically based on a temperature parameter. This
temperature is first initialized to a high value, and gradually low-
ered. This has the effect of allowing the segmentation S to reach
many states in the beginning. As the temperature is lowered, the
segmentation is gradually restricted to minima states. Both ICM
and SA are iterative, and have a medium memory usage as double
buffering is required. The thread count is equal to the number of
pixels in the image. The branch divergence is low, as the number
of instructions in the branches are low.

Griesser et al. (2005) presented a shader implementation of
MRF segmentation, but provided few details of their implementa-
tion. Valero et al. (2011) implemented a GPU version of the ICM
method in the ITK library. They achieved significant speedups,
and mention optimizations such as using shared memory and loop
unrolling. Jodoin (2006) presented an implementation using NVI-
DIA’s Cg shader language of both SA and ICM. In both cases there
is ample parallelism, as there is one thread for each pixel. The
result from one iteration is stored in texture memory, so that the
neighborhoods of each pixel can be read more efficiently during
the next iteration. Walters et al. (2009) presented liver segmenta-
tion using ICM and CUDA. They used coalesced reads from global
memory to increase performance, and experimented with different
thread grouping configurations. Another GPU implementation of
ICM based MRF segmentation was presented by Sui et al. (2012).
As opposed to the other implementations mentioned here, they
did not process pixels with overlapping neighborhoods in parallel.
Multiple passes are therefore required for each iteration, and larger
images are required for sufficient parallelism.

Modelling PðSÞ and PðIjSÞ can require several unknown parame-
ters. These parameters can be estimated using the expectation–
maximization (EM) algorithm. This algorithm is an iterative
maximum-likelihood method. It requires calculation of the expec-
tation of the conditional distribution PðSjIÞ, which is extremely
complex (Zhang, 1992). However, a mean-field approximation
can be used to make this calculation feasible Zhang (1992). Saito
et al. (2012) presented a GPU implementation of MRF segmenta-
tion using the mean-field approximation and CUDA. However, they
provided no details on the GPU implementation.

Graph cut (Boykov and Veksler, 2006) is another MRF segmen-
tation method. This method also uses a graph where all the pixels
in the image are nodes, and each pixel has an edge to its neighbor
pixels. However, all pixels have an additional edge to two special
nodes, called a source (S) and sink (T) node. This is depicted in
Fig. 11. The edges are assigned a weight, so that background pixels
have a large weight to one of these nodes, a small weight to the
other, and vice versa for the foreground pixels. The weights of
the edges between the pixels are designed to be large between
similar pixels, and small between different.

The segmentation is determined using a minimum cut graph
algorithm. These algorithms partition the nodes of a graph into
two sets. The graph is cut so that the sum of the weights of the
cut edges is minimized. The result is a binary segmentation that
is optimal in terms of the weights assigned to the edges.

There are several algorithms for finding the minimum cut, and
its dual problem maximum flow, where the graph is considered to
be a flow network. Two examples are the push-relabel and Ford-
Fulkerson algorithms.

The push-relabel method uses two operations, which both are
executed for every node in the graph. With one thread for each
node, the total number of threads is high. However, there is signif-
icant branch divergence, as these operations are only performed
for a subset of the nodes during each iteration. The memory usage
of this method is high because it has to store several attributes for
each edge.

Dixit et al. (2005) presented a GPU implementation of the push-
relabel algorithm using shader programming. However, in their
comparison with a serial implementation, the GPU implementa-
tion was slower except if some approximations were used.
Hussein et al. (2007) presented an optimized GPU implementation
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using CUDA, which was faster than two different serial implemen-
tations. Vineet and Narayanan (2008) presented a similar imple-
mentation where they improved the performance by using
shared and texture memory to speed up memory access. The two
previous implementations restrict the graph to a lattice. Garrett
and Saito (2009) showed how a GPU implementation of push-rela-
bel could be extended to arbitrary graphs by representing the ver-
tices and edges in a linear array.

An augmenting path is a path in the graph which has available
capacity. The Ford-Fulkerson method solves the minimum cut and
maximum flow problem by iteratively finding an augmenting path
from the source to the sink node. Flow is sent through this path,
and this is repeated until no more flow can be sent. This method
is not as well suited for data parallel computation as the push-rela-
bel algorithm. However, it is possible to run the method in parallel
by splitting the graph and solving each sub-graph in parallel as
done by Liu and Sun (2010) and Strandmark and Kahl (2010).
3.10. Centerline extraction and segmentation of tubular structures

Blood vessels, airways, bones, neural pathways and intestines
are all examples of important tubular structures in the human
body. In addition to the segmentation, the extraction of the center-
line of these structures is also important. The centerline is a line
that goes through the center and provides a structural representa-
tion of the tubular structures (see Fig. 12). It is important in several
applications such as registration of pre- and intraoperative data,
which is a key component in image guided surgery.

There are several methods for extracting tubular structures
from medical images. A recent and extensive review on blood ves-
sel extraction was done by Lesage et al. (2009), and an older one
was done by Kirbas and Quek (2004). Two reviews on the segmen-
tation of airways were done by Lo et al. (2009) and Sluimer et al.
(2006).
Fig. 12. Centerline, displayed in red, of the airway tree. The centerline was
extracted using tube detection filters from computed tomography data and the
segmentation was created using a region growing algorithm with the centerline as
seeds. All the processing was done on the GPU as explained in Smistad et al. (2013).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
A common method for extracting tubular structures is to grow
the segmentation iteratively from an initial point or area. For
instance using methods such as region growing, active contours
and level sets.

A centerline can be extracted from a binary segmentation using
iterative morphological thinning, also called skeletonization. With
this method, voxels are removed from the segmentation in a par-
ticular order until the object cannot be thinned anymore. This is
an iterative data parallel method with a thread count equal to
the size of the volume. The method has branch divergence, because
only a subset of the voxels need to be examined at each iteration.
Jiménez and Miras (2012) presented a GPU and multi-core CPU
implementation of the thinning method by Palágyi and Kuba
(1999) using CUDA and OpenCL.

Another approach is to use a distance transform or gradient vec-
tor flow (GVF) as done by Hassouna and Farag (2007). As explained
previously, computation of GVF can be accelerated on the GPU
(Eidheim et al., 2005; He and Kuester, 2006; Zheng and Zhang,
2012; Smistad et al., 2012b).

Direct centerline extraction without a prior segmentation is
also possible using methods such as shortest path and ridge tra-
versal. Aylward and Bullitt (2002) presented a review of different
centerline extraction methods. They proposed an improved ridge
traversal method based on a set of ridge criteria, and different
methods for handling noise. Bauer and Bischof (2008) showed
how this method could be used together with GVF. However, ridge
traversal is not a data parallel algorithm and therefore not suited
for GPU acceleration.

These methods usually need an initial estimation of candidate
centerpoints or the direction of the tubular structure. Tube detec-
tion filters (TDFs) are used to detect tubular structures by calculat-
ing a probability of each voxel being inside a tubular structure.
Most TDFs use gradient information, often in the form of the eigen-
analysis of the Hessian matrix. Frangi et al. (1998) presented an
enhancement and detection method for tubular structures based
on the eigenvalues of this matrix. A similar vessel enhancement
method was implemented on the GPU by Wang et al. (2013b) using
CUDA. Krissian et al. (2000) created a model-based detection filter
that fits a circle to the cross-sectional plane of the tubular struc-
ture. These TDFs are data parallel, and are computed for each voxel
in the volume. No synchronization is needed, and the memory
usage is low, as only one likelihood value has to be stored per
voxel.

Erdt et al. (2008) performed the TDF and a region growing seg-
mentation on the GPU and reported a 15 times faster computation
of the gradients and up to 100 times faster TDF. Narayanaswamy
et al. (2010) did vessel laminae segmentation with region growing
and a hypothesis detection on the GPU and reported an 8 times
speedup. Bauer et al. used GPU acceleration for the GVF computa-
tion in Bauer et al. (2009a), and the TDF calculation in Bauer et al.
(2009b). However, they provided no description of the GPU imple-
mentations. Smistad et al. (2012a) presented an implementation of
airway segmentation and centerline extraction. In this implemen-
tation, dataset cropping, GVF and TDF were executed on the GPU
using OpenCL. This implementation was further developed in
Smistad et al. (2013) to run completely on the GPU, and process
other types of tubular structures such as blood vessels from differ-
ent organs and modalities.

3.11. Segmentation of dynamic images – tracking

So far, only segmentation of single images, acquired at one spe-
cific time, has been discussed. However, medical image data
acquired over time also exist. For instance ultrasound devices cap-
tures several images per second. Real-time processing of such data
requires streaming of the data directly to the GPU. The segmenta-
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tion of structures in dynamic image data is often referred to as
tracking. One way to do segmentation of dynamic images, is to
apply one of the segmentation methods discussed so far on each
frame. However, this may not satisfy real-time constraints.
Another approach is to use the segmentation of the previous frame
to segment the next frame. The segmentation of the previous frame
can be used for initialization, or to create some a priori knowledge
for the next frame. Or more advanced statistical state estimation
methods can be used, such as Kalman and particle filters. In this
section, these two methods will be discussed further. An open
source library for tracking called Open Tracking Library (OpenTL)
(Panin, 2011) supports GPU processing, and implements both of
these methods and others.

3.11.1. Kalman filter
The Kalman filter (Kalman, 1960) is an algorithm that tries to

estimate a state using a series of noisy measurements over time.
In image segmentation, the state may be a set of parameters
describing the transformation of a shape, such as translation, rota-
tion, scaling and deformation. Several types of measurements can
be conducted. One type of measurement for object tracking is the
offset from each point on the shape to the object’s edges in the cur-
rent image frame. These offsets are found by a line search along the
normal in each point, similar to active shape models (ASMs). The
measurement process is data parallel, and the thread count is equal
to the number of line searches.

The algorithm itself consists of a set of matrix operations, and
most of the matrices have sizes dependent on the number of state
variables and measurements. Matrix operations such as multiplica-
tion, addition and inversion are all data parallel operations, and the
thread count is dependent on the matrix size. There exist several
linear algebra libraries for the GPU that can be used for accelera-
tion of such operations. A few examples are ViennaCL, MAGMA,
cuBLAS and clBLAS.

Thus, segmentation of dynamic images using the Kalman filter
is a data parallel operation, and the thread count is dependent on
the number of measurements and state variables. These numbers
can vary a lot from one application to another. However, they are
a lot smaller than the number of voxels. Thus, the thread count
is medium. The memory usage is low, as only a few small matrices
have to be stored. Some branch divergence may occur on the line
searches. For instance if some of the points on the shape are out-
side of the image. However, the actual algorithm has no or little
branch divergence.

Huang et al. (2011) presented a GPU implementation of the Kal-
man filter written in CUDA. They observed a very large speedup
compared to a serial implementation. The number of state vari-
ables ranged from 250 to 4500 and measurements from 1000 to
7000.

3.11.2. Particle filter
The particle filter method (Arulampalam et al., 2002) tries to

estimate the posterior density of the state variables given the mea-
surements. This is done by performing a Monte Carlo simulation
with a large number of samples, also called particles. Each particle
is a possible state for the next time step. The particles are assigned
a weight, which determines how well it describes the posterior
density. This is done by evaluating how well each particle matches
the object in the next image. With a large number of particles this
process can be computationally expensive. However, each particle
can be processed in parallel, and an estimate of the next state can
be determined by calculating a weighted sum of these particles.
Thus, the method is highly data parallel. The thread count is equal
to the number of particles. A high particle count generally gives
better results, and a couple of thousand particles seems to be com-
mon (Montemayor et al., 2006; Brown and Capson, 2012). The
memory usage is dependent on how the weight calculation is
implemented. For instance, Brown and Capson (2012) generated
an image for each particle, and compared each of these synthetic
images to the next image, which gave a high memory usage. The
rest of the method uses little memory. The same applies for the
branch divergence.

Several GPU implementations of particle filtering have been
reported, and have primarily focused on accelerating the expensive
weight calculation step. Montemayor et al. (2006) used Cg and
achieved real-time speeds with up to 2048 particles on a stream
of 2D images with the size 320 � 240. Mateo Lozano and Otsuka
(2008) and Lozano and Otsuka (2008) implemented face tracking
on a stream of images with size 1024 � 768 using CUDA.
Murphy-Chutorian and Trivedi (2008) and Lenz et al. (2008) did
face tracking using GLSL. Brown and Capson (2012) created a
GPU framework written in CUDA for tracking 3D models in a
stream of 2D images. They used shared memory to accelerate the
weight calculation process.
4. Discussion

In the preceding sections, GPU acceleration for medical image
segmentation has been reviewed. To conclude the survey, a discus-
sion on the main findingsand some predictions regarding the
future of image segmentation on GPUs are presented.
4.1. Current state of the art

The main findings of this review are summarized in Table 2. In
this table, all the segmentation methods discussed in this paper are
listed, and rated using the framework introduced in Section 2.

In general, most segmentation and image processing methods
process each pixel using the same instructions, and data from a
small neighborhood around the pixel. Thus, the thread count is
usually high. Typical sizes of medical datasets are 512� 512 for
images, and 5123 for volumes, which amount to over 262 thousand
pixels and more than 134 million voxels respectively. However, as
seen in this review, some segmentation methods do not process
each pixel. Examples include active contours, which move a con-
tour consisting of a set of points, and statistical shape models, that
model shapes using a set of landmark points. For these methods, it
may only be beneficial to use GPUs when the number of points is in
the thousands.

Most segmentation methods are also iterative because they run
the same kernel several times. This requires global synchroniza-
tion, which at present time is not possible to do efficiently from
inside a kernel. The iterative processing often require double buf-
fering, because global memory writes are not coherent within
one kernel execution. When using textures, double buffering is
currently required, as a texture can only be read or written to in
a thread. Double buffering doubles the amount of memory used,
which can be problematic for some methods such as 3D gradient
vector flow.

Branch divergence is also a challenge for several methods, as
not all pixels need to be processed. This is the case in segmentation
methods such as region growing and narrow-band level sets. The
performance loss due to branch divergence can be reduced using
stream compaction. However, this comes at a cost, and will not
improve performance if it has to be used for each iteration, which
is the case for region growing.

Some GPU implementations may not provide a large speedup
over an optimized serial version because the implementation
implies performing more work. This is true for methods such as
region growing and watershed. With region growing, the total
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number of pixels processed in each iteration is much higher in the
data parallel GPU implementation than the serial one.

Hadwiger et al. (2004) presented a report on the state of the art
of GPU-based segmentation in 2004. In contrast, there were very
few GPU-based segmentation implementations at this time, with
level set (Rumpf and Strzodka, 2001; Lefohn et al., 2004) being
one of the exceptions. They concluded that branch divergence
and memory management present challenges for GPU
implementations.

4.2. Software predictions

General purpose GPU frameworks such as OpenCL and CUDA
have attracted a lot of users in recent years. Their popularity is
likely to increase, as they ease the programming of GPUs compared
to shader programming.

OpenCL enables efficient use of both GPUs and CPUs. It is likely
that more hybrid solutions that use GPUs for the massively data
parallel parts, and the CPU for the less parallel parts will appear.
The challenge with these hybrid solutions is efficient sharing of
data. At the time of writing, sharing data has to be done explicitly
by memory transfer over the PCI express bus. However, this seems
to be an issue that both major GPU manufacturers want to
improve. This will be discussed in more detail in the next section.

It is also likely that there will be an increase in GPU libraries
with commonly used data structures and algorithms such as heaps,
sort, stream compaction and reduction. Libraries and frameworks
that aid in writing image processing algorithms as well as schedul-
ing, memory management and streaming of dynamic image data
will probably become more important as more algorithms and
image data are processed on the GPU. One framework that aims
to aid the design of image processing algorithms for different GPUs
is the Heterogeneous Image Processing Acceleration Framework
(HIPAcc).

4.3. Hardware predictions

The two main GPU manufacturers, NVIDIA and AMD, provide
some details of the future development of their GPUs. However,
these details are subject to change.

In general, the trend in GPU development has been increasing
the number of thread processors, the clock speed and the amount
of on-board memory. This allows more data to be processed faster
in parallel.

NVIDIA recently launched their new Kepler architecture, which
provide dynamic parallelism that allow threads to schedule new
threads. However, the nesting depth is currently limited to 24
(NVIDIA, 2012). Dynamic parallelism might prove to be useful in
segmentation methods that solve PDEs, such as level sets and
GVF, by enabling fine grid computations on some image areas
and coarse grid computations on other parts. Their current road-
map (NVIDIA, 2013b) suggests that their focus for the two next
milestones (Maxwell and Volta) will be on memory. Unified virtual
memory will allow CPUs and GPUs to share memory more seam-
lessly. Further down the road they plan to pile memory modules
atop one another, and place them on the same silicon substrate
as the GPU core itself. This technology is called stacked DRAM,
and can supposedly give GPUs access to up to one terabyte per sec-
ond of bandwidth.

AMD plan to focus on heterogeneous computing through their
Heterogeneous System Architecture (HSA) initiative (Advanced
Micro Devices, 2013). They state that current CPUs and GPUs have
been designed as separate processing elements, and do not work
together efficiently. Their plans is to rethink processor design to
unify these two processors types, and give applications a unified
address space.
Intel recently released another type of processor called the Intel
Xeon Phi Coprocessor (Intel, 2014). These processors have a large
number of cores (�60), large cache (�30 MB) and a lot of on-board
memory (�16 GB). However, in contrast to GPUs, they have fewer
thread processors (�240). Still, the large cache, memory band-
width and size may make these processors interesting also for
medical image segmentation.
5. Conclusions

In this review, the most common medical image segmentation
algorithms have been discussed, and rated according to how suited
they are for graphic processing units (GPUs). Through this compar-
ison, it is shown that most segmentation methods are data parallel
with a high amount of threads, which makes them well suited for
GPU acceleration. However, factors such as synchronization,
branch divergence and memory usage can limit the speedup over
serial execution. To reduce the impact of these limiting factors,
several GPU optimization techniques are discussed.
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